Publications
Dawson, G.; Seith, M.; Neary, M.; Diao, T.
Angew. Chem. Int. Ed. 2024, e202411110.
Tunable and Photoactivatable Mimics of Calicheamicin γ1 for DNA Cleavage
Ben-zvi, B.; Lian, C.; Brusco, M.; Diao, T.
J. Am. Chem. Soc. 2024, 146, 25416–25421
Industrial and Laboratory Technologies for the Chemical Recycling of Plastic Waste
Chin, M. T.; Diao. T.
ACS Catal. 2024, 14, 16, 12437–12453
Implementing a Doping Approach for Poly(Methyl Methacrylate) (PMMA) Recycling in a Circular Economy
Chin, M. T.; Yang, T.; Quirion, K. P.; Lian, C.; Liu, P.; He, J.; Diao. T.
J. Am. Chem. Soc. 2024, 146, 5786-5792.
Yang, J.; Neary, M. C.; Diao, T.
J. Am. Chem. Soc. 2024, 146, 6360-6368.
Dawson, G. A.; Spielvogel, E. H.; Diao, T.
Acc. Chem. Res. 2023, 56, 3640-3653.
Ligand Redox Activity of Organonickel Radical Complexes Governed by the Geometry
Dawson, G. A.; Lin, Q.; Neary, M. C.; Diao, T.
J. Am. Chem. Soc. 2023, 145, 20551-20561.
Selective Cleavage of Lignin Model Compounds via a Reverse Biosynthesis Mechanism
Suh, S. M.; Jambu, S.; Chin, M. T.; Diao, T.
Org. Lett. 2023, 25, 4792-4796.
Lin, Q.; Spielvogel, E. H.; Diao, T.
Chem 2023, 9, 1295-1308.
Qi, X.; Jambu, S.; Ji, Y.; Belyk, K.; Panigrahi, N.; Arora, P.; Strotman, N.; Diao, T.
Angew. Chem. Int. Ed. 2022, 61, e202213315.
Ju, L.; Hu, C.; Diao, T.
Organometallics, 2022, 41, 1748-1753.
Depolymerization of Lignin via a Microscopic Reverse Biosynthesis Pathway
Chin, M.; Suh, S.M.; Fang, Z.; Hegg, E.; Diao, T.
ACS Catal. 2022, 12, 2532-2539.
Reactivity of (bi-Oxazoline)organonickel Complexes and Revision of a Catalytic Mechanism
Ju, L.; Lin, Q.; LiBretto, N.; Wagner, C. L. ; Hu, C.; Miller, J.; Diao, T.
J. Am. Chem. Soc. 2021, 143, 14458-14463.
Experimental Electrochemical Potentials of Nickel Complexes
Lin, Q.; Dawson, G. A.; Diao, T.
Synlett 2021, 32, 1606-1620.
(Invited contribution)
Monovalent Nickel-Mediated Radical Formation: A Concerted Halogen-Atom Dissociation Pathway Determined by Electroanalytical Studies
Lin, Q.; Fu, Y.; Liu, P.; Diao, T.
J. Am. Chem. Soc. 2021, 143, 14196-14206.
Synthesis of C-Acyl Furanosides via the Cross-Coupling of Glycosyl Esters with Carboxylic Acids
Wei, Y.; Lam, J.; Diao, T.
Chem. Sci. 2021, 12, 11414-11419.
Wagner, C. L.; Herrera, G.; Lin, Q.; Hu, C.; Diao, T.
J. Am. Chem. Soc. 2021, 143, 5295-5300.
Diastereoselective Synthesis of Aryl C-Glycosides from Glycosyl Esters via C-O Bond Homolysis
Wei, Y.; Ben-zvi, B.; Diao, T.
Angew. Chem. Int. Ed. 2021, 60, 9433-9438.
Asymmetric Reductive Dicarbofunctionalization of Alkenes via Nickel Catalysis
Anthony, D.; Diao, T.
Synlett 2020, 31, 1443-1447.
Nickel-Catalyzed Dicarbofunctionalization of Alkenes
Xi, Q.; Diao, T.
ACS Catal. 2020, 10, 8542-8556.
Mechanisms of Nickel-Catalyzed Coupling Reactions and Applications in Alkene Functionalization
Diccianni, J. B.; Lin, Q.; Diao, T.
Acc. Chem. Res. 2020, 53, 906-919.
Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions
Diccianni, J. B.; Diao, T.
Trends Chem. 2019, 1, 830-844.
Mechanism of Ni-Catalyzed Reductive 1,2-Dicarbofunctionalization of Alkenes
Lin, Q.; Diao, T.
J. Am. Chem. Soc. 2019, 141, 17937-17948.
Insertion of CO2 Mediated by a (Xantphos)Ni(I)–Alkyl Species
Diccianni, J. B.; Hu, T. H.; Diao, T.
Angew. Chem. Int. Ed. 2019, 58, 13865-13868.
Synthesis of lactate derivatives via reductive radical addition to α-oxyacrylates
Diccianni, J. B.; Chin, M.; Diao, T.
Tetrahedron 2019, 75, 4180-4185.
(Invited contribution in honor of John Hartwig’s Tetrahedron Award)
Ni‐Catalyzed Asymmetric Reductive Diarylation of Vinylarenes
Anthony, D. , Lin, Q. , Baudet, J. and Diao, T.
Angew. Chem. Int. Ed. 2019, 58, 3198.
Diccianni, J. B.; Katigbak, J.; Hu, C.; Diao, T.
J. Am. Chem. Soc. 2019, 141, 4, 1788-1796
Ni-catalyzed Two-component Reductive Dicarbofunctionalization of Alkenes via Radical Cyclization
Kuang, Y.; Wang, X.; Anthony, D.; Diao, T.
Chem. Commun. 2018, 54, 2558-2561.
Structural Characterization of β-Agostic Bonds in Pd-Catalyzed Polymerization
Xu, H.; Hu, C.; Wang, X.; Diao, T.
Organometallics 2017, 36, 4099-4102.
Ni(I)-Catalyzed Reductive Cyclization of 1,6-Dienes: Mechanism-Controlled trans Selectivity
Kuang, Y.; Anthony, D.; Katigbak, J.; Marrucci, F.; Humagain, S.; Diao, T.
Chem 2017, 3, 268-280.
Nickel-Catalyzed Reductive Cycloisomerization of Enynes with CO2
Diccianni, J. B.; Heitmann, T.; Diao, T.
J. Org. Chem. 2017, 82, 6895-6903.
Bimetallic, High-Valent Nickel Complexes: Ni–Ni Bonds in Aryl–Halogen Bond Formation
Diccianni, J. B.; Hu, C.; Diao, T.
Angew. Chem. Int. Ed. 2017, 56, 3635-3639.
Structure and Isotope Effects of the β-H Agostic (α-Diimine)Nickel Cation as a Polymerization Intermediate
Xu, H.; White, P. B.; Hu, C.; Diao, T.,
Angew. Chem. Int. Ed. 2017, 56, 1535-1538.
N−N Bond Forming Reductive Elimination via a Mixed-Valent Nickel(II)-Nickel(III) Intermediate
Diccianni, J. B.; Hu, C.; Diao, T.
Angew. Chem. Int. Ed. 2016, 55, 7534-7538.
Bimetallic C–C Bond-Forming Reductive Elimination from Nickel
Xu, H.; Diccianni, J. B.; Katigbak, J.; Hu, C.; Zhang, Y.; Diao, T.
J. Am. Chem. Soc. 2016, 138, 4779-4786.
Before NYU
Schuster, C. H.; Diao, T.; Pappas, I.; Chirik, P. J., “Bench-Stable, Substrate-Activated Cobalt Carboxylate Pre-Catalysts for Alkene Hydrosilylation with Tertiary Silanes” ACS Catalysis 2016, 2632-2636.
Palmer, W. N.; Diao, T.; Pappas, I.; Chirik, P. J., “High-Activity Cobalt Catalysts for Alkene Hydroboration with Electronically Responsive Terpyridine and α-Diimine Ligands” ACS Catalysis 2015, 5, 622-626.
Atienza, C. C. H.; Diao, T.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Boyer, J. L.; Roy, A. K.; Chirik, P. J. “Bis(imino)pyridine Cobalt-Catalyzed Dehydrogenative Silylation of Alkenes: Scope, Mechanism, and Origins of Selective Allylsilane Formation” J. Am. Chem. Soc.2014, 136, 12108-12118.
Diao, T.; Stahl, S. S. “O2-promoted Allylic Acetoxylation of Akenes: Assessment of ‘‘Push’’ versus ‘‘Pull’’ Mechanisms and Comparison Between O2 and Benzoquinone” Polyhedron 2014, 84, 96-102.
Pun, D.; Diao, T.; Stahl, S. S. “Aerobic Dehydrogenation of Cyclohexanone to Phenol Catalyzed by Pd(TFA)2/2-Dimethylaminopyridne: Evidence for the Role of Pd Nanoparticles”, J. Am. Chem. Soc. 2013, 135, 8213–8221.
Diao, T.; Pun, D.; Stahl, S. S. “Aerobic Dehydrogenation of Cyclohexanone to Cyclohexenone Catalyzed by Pd(DMSO)2(TFA)2:”, Evidence for Ligand-Controlled Chemoselectivity”, J. Am. Chem. Soc. 2013, 135, 8205–8212.
Diao, T.; White, P.; Guzei, I.; Stahl, S. S. “Characterization of DMSO Coordination to Palladium(II) in Solution and Insights into the Aerobic Oxidation Catalyst, Pd(DMSO)2(TFA)2” Inorg. Chem. 2012, 51, 11898-11909.
Diao, T.; Wadzinski, T. J.; Stahl, S. S. “Direct Aerobic α,β-Dehydrogenation of Aldehydes and Ketones with a Pd(TFA)2/4,5-Diazafluorenone Catalyst” Chem. Sci. 2012, 3, 887-891.
Diao, T.; Stahl, S. S. “Synthesis of Cyclic Enones via Direct Palladium-Catalyzed Aerobic Dehydrogenation of Ketones” J. Am. Chem. Soc.2011, 133,14566-14569.
Ye, X.; Johnson, M. D.; Diao, T.; Yates, M. H.; Stahl, S. S. “Development of Safe and Scalable Continuous-flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions” Green Chem. 2010, 12, 1180-1186.
Diao, T.; Sun, X.; Fan, R.; Wu, J. “Unexpected Ring-opening Reaction of Aziridine with Acetic Anhydride in DMF” Chem. Lett. 2007, 36, 604-605.
Wu, J.; Diao, T.; Sun, W.; Li, Y. “Expeditious Approach to Coumarins via Pechmann Reaction Catalyzed by Molecular Iodine or Ag(OTf)” Synth. Commun. 2006, 36, 2949-2956.
Wu, J.; Zhang, L; Diao, T. “Expeditious Approach to Quinolines via Friedländer Synthesis Catalyzed by FeCl3 or Mg(ClO4)2” Synlett. 2005, 17, 2653-2657.
Book Chapter
Shannon S. Stahl; Diao, T. Oxidation Adjacent to C=X Bonds by Dehydrogenation. In Comprehensive Organic Synthesis II; Knochel, P., Molander, G. A., Eds.; Elsevier Comp. Org. Synth. 2014, 7, 178-212.
Patents
Diao, T.; Chirik, P. J.; Roy, A. K.; Lewis, K. M.; Delis, J. G. P.; Weller, K. J. “Dialkyl Cobalt Catalysts and Their Use for Hydrosilylation and Dehydrogenative Silylation” WO 2015171881 A1, 2015.
Diao, T.; Chirik, P. J.; Roy, A. K.; Lewis, K. M.; Weller, K. J.; Delis, J. G. P.; Yu, R. “Cobalt Terpyridine Complexes as Catalysts for Hydrosilylation and Dehydrogenative Silylation of Alkenes” WO 2015077306 A1, 2015.
Diao, T.; Chirik, P. J.; Roy, A. K.; Lewis, K. M.; Weller, K. J.; Delis, J. G. P.; Yu, R. “Dehydrogenative Silylation, Hydrosilylation and Crosslinking Using Cobalt Catalysts” WO 2015077298 A1, 2015.
Diao, T.; Chirik, P. J.; Roy, A. K.; Lewis, K. M.; Nye, S. A.; Weller, K. J.; Delis, J. G. P. “Cobalt Catalysts and their Use for Hydrosilylation and Dehydrogenative Silylation” U.S. Patent US20150141647 A1, 2015.
Diao, T.; Chirik, P. J.; Roy, A. K.; Lewis, K. M.; Nye, S. A.; Weller, K. J.; Delis, J. G. P.; Yu, R. “Dehydrogenative Silylation, Hydrosilylation and Crosslinking Using Cobalt Catalysts” U.S. Patent US20150080536 A1, 2015.
Chirik, P. J.; Diao, T.; Yu, R. “Hydroboration and Borylation with Cobalt Catalysts” WO 2015077344 A1, 2015.
Roy, A. K.; Atienza, C. C. H.; Chirik, P. J.; Lewis, K. M.; Weller, K. J.; Nye, S. A.; Delis, J. G. P.; Boyer, J. L.; Diao, T.; Pohl, E. “Selective 1,2-Hydrosilylation of Terminally Unsaturated 1,3-Dienes using Iron Catalysts” U.S. Patent US 20140330024 A1, 2014.
Roy, A. K.; Atienza, C. C. H.; Chirik, P. J.; Lewis, K. M.; Weller, K. J.; Nye, S.; Delis, J. G. P.; Boyer, J. L.; Diao, T.; Pohl, E. “Reusable Homogeneous Cobalt Pyridine Diimine Catalysts for Dehydrogenative Silylation and Tandem Dehydrogenative-Silylation-Hydrogenation” U.S. Patent US20140243486 A1, 2014.